Deterministic global optimization using space-filling curves and multiple estimates of Lipschitz and Holder constants

نویسندگان

  • Daniela Lera
  • Yaroslav D. Sergeyev
چکیده

In this paper, the global optimization problem miny∈S F (y) with S being a hyperinterval in R and F (y) satisfying the Lipschitz condition with an unknown Lipschitz constant is considered. It is supposed that the function F (y) can be multiextremal, non-differentiable, and given as a ‘black-box’. To attack the problem, a new global optimization algorithm based on the following two ideas is proposed and studied both theoretically and numerically. First, the new algorithm uses numerical approximations to space-filling curves to reduce the original Lipschitz multi-dimensional problem to a univariate one satisfying the Hölder condition. Second, the algorithm at each iteration applies a new geometric technique working with a number of possible Hölder constants chosen from a set of values varying from zero to infinity showing so that ideas introduced in a popular DIRECT method can be used in the Hölder global optimization. Convergence conditions of the resulting deterministic global optimization method are established. Numerical experiments carried out on several hundreds of test functions show quite a promising performance of the new algorithm in comparison with its direct competitors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Index Information Algorithm with Local Tuning for Solving Multidimensional Global Optimization Problems with Multiextremal Constraints

Multidimensional optimization problems where the objective function and the constraints are multiextremal non-differentiable Lipschitz functions (with unknown Lipschitz constants) and the feasible region is a finite collection of robust nonconvex subregions are considered. Both the objective function and the constraints may be partially defined. To solve such problems an algorithm is proposed, ...

متن کامل

An information global minimization algorithm using the local improvement technique

In this paper, the global optimization problem with an objective function that is multiextremal that satisfies the Lipschitz condition over a hypercube is considered. An algorithm that belongs to the class of information methods introduced by R.G. Strongin is proposed. The knowledge of the Lipschitz constant is not supposed. The local tuning on the behavior of the objective function and a new t...

متن کامل

A univariate global search working with a set of Lipschitz constants for the first derivative

In the paper, a global optimization problem is considered where the objective function f(x) is univariate, black-box, and its first derivative f (x) satisfies the Lipschitz condition with an unknown Lipschitz constant K. In the literature, there exist methods solving this problem by using an a priori given estimate of K, its adaptive estimates, and adaptive estimates of local Lipschitz constant...

متن کامل

Lipschitz gradients for global optimization in a one-point-based partitioning scheme

A global optimization problem is studied where the objective function f(x) is a multidimensional black-box function and its gradient f ′(x) satisfies the Lipschitz condition over a hyperinterval with an unknown Lipschitz constant K. Different methods for solving this problem by using an a priori given estimate of K, its adaptive estimates, and adaptive estimates of local Lipschitz constants are...

متن کامل

Synthesis of Space-Filling Curves Through Measure- Preserving Transformations and Their Application to Global Optimization

This paper proposes a new multi-start, stochastic global optimization algorithm that uses dimensional reduction techniques based upon approximations of space-filling curves and simulated annealing, aiming to find global minima of real-valued (possibly multimodal) functions that are not necessarily well behaved, that is, are not required to be differentiable, continuous, or even satisfying Lipsc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1509.03590  شماره 

صفحات  -

تاریخ انتشار 2015